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Abstract We consider the Ising model on a cylindrical lattice of L columns, with fixed-spin
boundary conditions on the top and bottom rows. The spontaneous magnetization can be
written in terms of partition functions on this lattice. We show how we can use the Clifford
algebra of Kaufman to write these partition functions in terms of L by L determinants, and
then further reduce them to m by m determinants, where m is approximately L/2. In this
form the results can be compared with those of the Ising case of the superintegrable chiral
Potts model. They point to a way of calculating the spontaneous magnetization of that more
general model algebraically.

Keywords Statistical mechanics · Lattice models · Transfer matrices

1 Introduction

Onsager calculated the partition function of the two-dimensional square-lattice Ising model
in 1944 [1]. He did so by observing that the row-to-row transfer matrices generated a finite
Lie algebra. This method was refined by Kaufman in 1949 [2], who showed that the matrices
could be expressed in terms of a Clifford algebra. By taking the thermodynamic limit of a
large lattice, one obtains the free energy per site.

The calculation of the spontaneous magnetization is much harder than that of the free
energy. Onsager first announced his famous result for the spontaneous magnetization at a
conference at Cornell University in August 1948 and later at a IUPAP conference in Flo-
rence [3, 4]. Onsager never published his derivation—the puzzle was finally solved by Yang
in 1952 [5].

Here we wish to re-visit this problem, with a view to seeing if the techniques can be
generalized to the N -state superintegrable case of the solvable chiral Potts model, which
has properties very similar to the Ising model and reduces to it when N = 2. The author has
previously used large-lattice functional relations and analytic methods to obtain the sponta-
neous magnetization of the general solvable chiral Potts model [6, 7], but it would still be
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interesting to have an algebraic method that may give more insight into the properties of the
model on a finite lattice.

In Sect. 2 we define the Ising model on a cylindrical lattice of L columns, with fixed-spin
boundary conditions on the top and bottom rows. We show how the magnetization can be
expressed, firstly as the ratio of partition functions, and consequently as a matrix element
between the two ground-state eigenvectors of the transfer matrix T . In Sect. 3 we introduce
the hamiltonian H which commutes with T and define “hamiltonian partition functions”
Z̃, ˜W . These are limiting cases of the usual partition functions and are slightly simpler to
work with. This Z̃ corresponds to the usual partition function, ˜W to the partition function
with an extra factor σ1, where σ1 is some spin deep inside the lattice.

In Sect. 4 we set up the apparatus of the Clifford algebra and use it to write Z̃, ˜W as square
roots of L by L determinants. Up to this point our calculation parallels that of Yang [5].
Montroll et al. [4] also calculated the spontaneous magnetization using the more combina-
torial pfaffian method and Szegő’s theorem on Toeplitz matrices [8]. In Sect. 5 we marry
Yang and Montroll et al.’s techniques by using Szegő’s theorem to evaluate the appropriate
large-L limit of W̃ and hence derive Onsager’s famous formula for the spontaneous magne-
tization.

In Sect. 6 we show how the expressions for Z̃, ˜W can be reduced to linear expressions
in determinants of dimension [(L − Q)/2], where Q = 0 or 1. Then Z̃ is precisely the
hamiltonian limit of the corresponding partition function of the two-state superintegrable
chiral Potts model. In Sect. 7 we write the result for ˜W in terms of two orthogonal matrices
B+,B−.

In Sect. 8 we comment on whether our result for ˜W can be generalized to the N -state
superintegrable chiral Potts model.

2 The Model

The model is defined on the square lattice L, rotated through 45◦, with M + 1 horizontal
rows, each containing L spins, as in Fig. 1.

We impose cylindrical boundary conditions, so that the last column L is followed by the
first column 1. At each site i there is a spin σi , taking the values +1 or −1. The spins in the
bottom row are fixed to have value a = ±1, those in the top row to have value +1. Adjacent
spins σi, σj on southwest to northeast edges (with i below j ) interact with Boltzmann weight
exp(Kσiσj ); those on southeast to northwest edges with weight exp(Kσiσj ).

Fig. 1 The square lattice L
turned through 45◦
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An important associated parameter is

k′ = (

sinh 2K sinh 2K
)−1

. (2.1)

The system is ferromagnetically ordered if K,K are positive real and

0 < k′ < 1. (2.2)

To align with our notation for the chiral Potts model [6, 7] we are defining the RHS of (2.1)
to be k′, rather than k as in Onsager [1, (2.1a)].

Partition Function

The partition function, which depends on a, is

Za =
∑

σ

∏

〈i,j 〉
exp(Kσiσj )

∏

〈i,j 〉
exp(Kσiσj ), (2.3)

the products being over all edges of the two types. The sum is over all values of all the free
spins. The partition function can be written as

Za = u†
aT

Mu+, (2.4)

where T is the row-to-row transfer matrix, with elements

Tσ,σ ′ =
L

∏

i=1

exp(Kσiσ
′
i+1) exp(Kσiσ

′
i ), (2.5)

σ being the set of all spins σ1, . . . , σL in one row, and σ ′ being the set in the row above.
Thus T is a 2L by 2L matrix. The vector ua is of dimension 2L, with entries

(ua)σ =
{

1 if σ1 = · · · = σL = a,

0 otherwise.
(2.6)

Two transfer matrices T ,T ′, with different values of K and K , commute provided they
have the same value of k′ [9, Sect. 7.5]

Here u† denoted the transposed conjugate of u. However, all our matrices are real, and
T commutes with its transpose, so all the eigenvectors we shall discuss are also real: the
complex conjugation is unnecessary.

We shall also need the matrices S1, . . . , SL, C1, . . . ,CL, defined by

(Sj )σ,σ ′ = σj

L
∏

n=1

δ(σn, σ
′
n), (2.7)

(Cj )σ,σ ′ = δ(σj ,−σ ′
j )

L
∏

n=1

∗
δ(σn, σ

′
n), (2.8)
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where the ∗ means that the term n = j is excluded from the product, If I, S,C are the
two-by-two matrices

I =
(

1 0
0 1

)

, S =
(

1 0
0 −1

)

, C =
(

0 1
1 0

)

, (2.9)

then we can write Sj ,Cj as

Sj = I ⊗ · · · ⊗ I ⊗ S ⊗ I ⊗ · · · ⊗ I,

Cj = I ⊗ · · · ⊗ I ⊗ C ⊗ I ⊗ · · · ⊗ I,

the S,C on the RHS being in position j in the sequence of L factors.

Spontaneous Magnetization

Take a = +1, so all top and bottom boundary spins are +. Let 0 be a site deep within the
lattice. The expectation value of its spin σ0 is

M = 〈σ0〉 = Z−1
+

∑

σ

σ0

∏

〈i,j 〉
exp(Kσiσj )

∏

〈i,j 〉
exp(Kσiσj ). (2.10)

We take the limit when the lattice is infinitely large, so L,M → ∞, and site 0 is infinitely
far from the boundaries.

The 〈i, j〉 products are unchanged by negating all spins σi , so if we imposed toroidal
boundary conditions, then it would be true that

〈σ0〉 = −〈σ0〉 (2.11)

and this would imply that M = 0. At high temperatures (k′ ≥ 1), this is true also for our
fixed-spin boundary conditions when we take the large-lattice limit. However, at lower tem-
peratures (0 < k′ < 1) the system has ferromagnetic long-range order and “remembers” the
boundary conditions even in the limit of 0 deep inside a large lattice, so that

0 < M < 1. (2.12)

If 0 is in column i of row j + 1, then we can write (2.10) as

M = u†
+T jSiT

M−ju+/u†
+T Mu+. (2.13)

Because of our cylindrical boundary conditions, we can cyclically permute the columns of
L, so the RHS must be independent of i.

The Sub-spaces

The operator that negates all the spins in a row is

R = C1C2 · · ·CL. (2.14)

We can divide the full 2L-dimensional space into two orthogonal subspaces V+, V− such
that

Rv = rv if v ∈ Vr , r = + or − . (2.15)
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The operator R commutes with T and H, so its eigenvectors lie either in V+ or V−. Let �a

be the largest eigenvalue of T in Va , ψa the corresponding eigenvector normalized so that
ψ†

a ψa = 1, and define

v+ = (u+ + u−)/
√

2, v− = (u+ − u−)/
√

2. (2.16)

Then T jva ∈ Va for all j and

v†
aT

Mvb = 0 if a 
= b, (2.17)

v†
aT

jSiT
M−j vb = 0 if a = b, (2.18)

so (2.13) becomes

M = v
†
+T jSiT

M−j v− + v
†
−T jSiT

M−j v+
v

†
+T Mv+ + v

†
−T Mv−

. (2.19)

Asymptotic Degeneracy

If j,M − j are large we can take T j = �
j
+ψ+ψ

†
+ or �

j
−ψ−ψ

†
− (depending on the sub-space

in which T is acting). Similarly for T M−j and T M . Thus the four matrix elements in (2.19)
will be proportional to �

j
+�

M−j
− , �

j
−�

M−j
+ , �M+ , �M− , respectively. However, for 0 < k < 1,

�+ and �− are asymptotically degenerate, in that for L large

�+/�− = 1 + O(e−Lζ ), (v†
+ψ+)/(v†

−ψ−) = 1 + O(e−Lζ ), (2.20)

choosing the signs of the ψa appropriately. Here ζ is independent of L and is a measure of
the interfacial tension between the two phases [9, Sect. 7.10]

That this should be so can be seen from a low-temperature series expansion of the eigen-
values � and eigenvectors ψ of T (or more conveniently the H of the next sub-section) in
increasing powers of k′.

One can start from a single zero-temperature configuration in which either all spins are
+1, or all are −1 (u+ or u−). The expansion then proceeds identically for each choice (going
from one choice to the other by negating all spins) until one reaches terms of order k′L, when
one has to consider the opposite state (all spins −1 or all +1) from the original. This has
the same eigenvalue for k′ = 0, so naive eigenvalue perturbation theory fails. Then and only
then does one have to decide whether to symmetrize or anti-symmetrize the eigenvector with
respect to R.

If φ+, φ− are the corresponding two near-eigenvectors, then up to this order the eigen-
values are the same and

u†
−φ+ = u†

+φ− = 0. (2.21)

The actual eigenvectors of T are obtained by symmetrizing:

ψ+ = (φ+ + φ−)/
√

2, ψ− = (φ+ − φ−)/
√

2. (2.22)

The relations (2.20) then follow, using (2.16).
Hence in the limit of j,M − j,L all large we can take �+ = �−, and (2.19) becomes

M = ψ†
+Siψ−. (2.23)
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3 The Associated Hamiltonian H

Consider the limit when K becomes small and K becomes large while k′ remains fixed.
Then to first order in K we obtain from (2.5)

e−LKT = I − KH = e−KH, (3.1)

where I is the 2L-dimensional identity matrix,

H = H0 + k′H1, (3.2)

where

H0 = −
L

∑

i=1

SiSi+1, H1 = −
L

∑

i=1

Ci (3.3)

and SL+1 = S1. It follows that this hamiltonian H commutes with the transfer matrix T and
with R. Its ground state eigenvector (the one corresponding to the most negative eigenvalue
of H , and to the largest eigenvalue of T ) in the subspace Va will therefore be ψa .

When k′ = 0, the hamiltonian reduces to the diagonal matrix H0 and we see that the
ground state eigenvectors are indeed u+ and u−, both with eigenvalue −L. it is convenient
to define the closely related matrix

J = H0 + LI =
L

∑

i=1

(I − SiSi+1). (3.4)

This has minimum eigenvalue 0, the corresponding eigenvectors being v+ and v−.

Hamiltonian Partition Functions

We could continue to look at the four matrix elements in (2.19), or attempt to evaluate
directly the result (2.23). We prefer to follow an intermediate path and to consider the ex-
pressions

Z̃+(α) = v†
+e−αHv+, Z̃−(β) = v†

−e−βHv−, (3.5)

˜W(α,β, x) = v†
+e−αHe−ρJ S1e−βHv−, (3.6)

where

x = e−4ρ. (3.7)

This corresponds to taking the limits K → 0, j,M − j → ∞ in the matrix elements of
(2.19), while keeping α = jK and β = K(M − j) fixed.

The advantage of these expressions is that they are finite-lattice partition functions, but
with T j replaced by the rather simpler matrix e−αH. For definiteness, we have taken the i in
(2.19) to be 1.

We have introduced the factor e−ρJ into ˜W because the elements of the diagonal matrix
J take the values 0,4,8, . . . ,4[L/2], where [x] is the integer part of x. Hence ˜W(α,β, x) is
a polynomial in x of degree [L/2]. This naturally manifests itself in the following working
and provides a useful check against errors.
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If ρ → ∞, so x → 0, then

e−ρJ S1 → u+u†
+ − u−u†

− = v+v†
− + v−v†

+, (3.8)

hence

˜W(α,β,0) = Z̃+(α)Z̃−(β). (3.9)

Also,

˜W(α,0, x) = Z̃+(α),

˜W(0, β, x) = Z̃−(β).
(3.10)

When α is large and positive, we can replace e−αH in the above definitions by
e−α�+ψ+ψ

†
+ or by e−α�−ψ−ψ

†
−, according to the sub-space in which H is acting. One can

then verify that

M = lim
α,β,L→∞

˜W(α,β,1)

[Z̃+(2α)Z̃−(2β)]1/2
. (3.11)

We show in the following sections that we can use the techniques of Kaufman [2] and
Yang [5] to express the Z̃, ˜W expressions as square roots of L by L determinants, and
hence evaluate M by using Szegő’s theorem on Toeplitz forms [4, 8]. We further show that
the determinants themselves can be expressed as squares of m by m determinants, where
L − 2 ≤ 2m ≤ L.

4 The Clifford Algebra

General Remarks

Set

Dj = iCjSj = −iSjCj , (4.1)

�j = C1C2 · · ·Cj−1Dj, �L+j = C1C2 · · ·Cj−1Sj (4.2)

for j = 1, . . . ,L.
These �1, . . . ,�2L anti-commute:

�i�j + �j�i = 2δi,jI (4.3)

for 1 ≤ i, j ≤ 2L, so form a Clifford algebra. If P is any orthogonal (not necessarily real)
2L by 2L matrix and

�∗
i =

2L
∑

j=1

Pi,j�j , (4.4)

then it is also true that

�∗
i �

∗
j + �∗

j �
∗
i = 2δi,jI. (4.5)

If V is a 2L-dimensional matrix such that

V �iV
−1 =

2L
∑

j=1

vj,i�j , (4.6)
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for i = 1, . . . ,2L, then we say that the 2L by 2L matrix ̂V with elements vi,j is the repre-
sentative of V . If V is real and symmetric, then ̂V is orthogonal and hermitian.

Such matrices form a group G [10]. If V,V ′ have the property (4.6), with representatives
̂V , ̂V ′, then so does V V ′, and its representative is ̂V ̂V ′. Also, if ̂V = ̂V ′, then

V = cV ′,

where c is a scalar factor. This means that a representative matrix determines its parent to
within a scalar factor.

If �i,�
∗
i are related by (4.4), then

V �∗
i V

−1 =
∑

j

v∗
j,i�

∗
j , (4.7)

where the v∗
i,j are the elements of the matrix P ̂V P T . Thus mapping �i to �∗

i takes ̂V to
P ̂V P T . Similarly, if a matrix 2L-dimensional H satisfies

H�i − �iH = (H,�i) =
2L
∑

j=1

hj,i�j , (4.8)

where the hi,j are elements of a matrix ̂H , then the same mapping takes ̂H to P ̂HP T . We
call Ĥ the H-representative of H .

Any representative ̂V is orthogonal and any H -representative ̂H is anti-symmetric. If V

(H ) is hermitian, then (because the �j are hermitian), then ̂V ( ̂H ) is also hermitian.

Exponentials of H, ̂H

If ̂H is hermitian, then it must be pure imaginary and anti-symmetric. It is diagonalizable
by a unitary matrix. Further, its eigenvalues are real and occur in pairs λ and −λ, the cor-
responding eigenvectors being complex conjugates of one another. Adding and subtracting
these eigenvectors, it follows that there is a real orthogonal transformation that takes ̂H to
the form

D =
(

0 iD
−iD 0

)

, (4.9)

where D is a diagonal matrix.
By making such a transformation and then explicitly considering the two-by-two con-

stituent blocks of D, we find that exp(−αH) ∈ G, so

representativeof exp(−αH) = exp(−α ̂H). (4.10)

Partition Functions

If V is hermitian, we can similarly find an orthogonal transformation (4.4) that takes ̂V to
block diagonal form, each block being hermitian and orthogonal, so of the form

(

cosh 2αj i sinh 2αj

−i sinh 2αj cosh 2αj

)

, (4.11)



Algebraic Reduction of the Ising Model 967

where j = 1, . . . ,L. If we arrange the �∗
j so that this block is in rows and columns j,L+ j ,

it follows that

V = c exp

⎛

⎝i
L

∑

j=1

αj�
∗
j �

∗
L+j

⎞

⎠ , (4.12)

where c is some scalar factor.
Each term �∗

j �
∗
L+j commutes with all the other terms, so we have decomposed V into

a direct product of two-by-two matrices, the j th such matrix having eigenvalues eαj , e−αj .
Hence

traceV/(detV )1/d =
L

∏

j=1

2 coshαj , (4.13)

where d = 2L. On the other hand, from (4.11),

det
(

I + ̂V
) =

L
∏

J=1

4 cosh2 αj , (4.14)

so we have the identity

traceV/(detV )1/d = [

det(I + ̂V )
]1/2

. (4.15)

Note that the relations (4.10), (4.15) are quite general, being unchanged by the orthogonality
transformation (4.4).

Representative of exp(−αH)

From (3.3), (4.2),

H0 = iR�L�L+1 − i
L−1
∑

j=1

�j�L+j+1,

H1 = i
L

∑

j=1

�j�L+j ,

(4.16)

so we see that H0, H1 are both quadratic forms in the �i , provided we introduce the spin-
reversal operator R. We can do this, since in either sub-space V±, R commutes with T and
H, having the value r = +1 in V+, and r = −1 in V−.

From now on we take H0 to be defined by (4.16) and J by (3.4), with R fixed to be
either r = +1 or r = −1. The minimum eigenvalue of J is still zero, but is now unique, the
corresponding eigenvector being either v+ or v−.

To calculate the matrix elements Z̃, ˜W using (4.15), we shall need to write each as the
trace of an operator. We can do this by introducing the operator exp(−γJ ). In the limit
γ → +∞ we have

e−γJ = vrv
†
r . (4.17)
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It follows that

[H0,�i] = 2i�L+i+1, [H0,�L+i] = −2i�i−1,

[H1,�i] = −2i�L+i , [H1,�L+i] = 2i�i,
(4.18)

for i = 1, . . . ,L, provided that on the RHS we take �2L+1 = −r�L+1 and �0 = −r�L.
We shall need some sparse L by L matrices. Let 0, I be the zero and identity L by L

matrices, respectively, and let A,B be the one-off and two-off-diagonal L by L matrices

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · ·
· 0 1 0
· ·
· ·
· 0 1 0
0 · 0 1

−r 0 · · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0 · · ·
· 0 0 1 0
· ·
· ·
0 0 0 1

−r 0 0 0
0 −r 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that

AAT = AT A = I, B = A2. (4.19)

Then from (4.18), the H -representatives are

̂H0 = 2i

(

0 −A
AT 0

)

, (4.20)

̂H1 = 2i

(

0 I

−I 0

)

. (4.21)

Diagonalization of H

From (3.2), the H -representative of H is ̂H0 + k′
̂H1.

We calculate this matrix. First we define a 2L by 2L matrix M (not to be confused with
the M of Sect. 2):

M =
(

i −iA
AT 1

)

(4.22)

(writing i for iI and 1 for I ). Then

M−1
̂H0M = 2

(−1 0
0 1

)

, (4.23)

M−1
̂H1M =

(

A+AT I − B
I − BT −A−AT

)

. (4.24)

Thus M−1
̂H0M is diagonal.

For j = 1, . . . ,L, define

θj =
{

π(2j − 1)/L if r = +,

2πj/L if r = −,
(4.25)
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set

zj = eiθj ,

and let P̂ , Q̂ be the L by L matrices with entries

P̂i,j = zi−1
j /

√
L, Q̂i,j = izi−2

j /
√

L. (4.26)

These matrices are unitary, but not orthogonal. Set

P =
(

P̂ 0
0 Q̂

)

. (4.27)

Then

H̃0 = P−1M−1
̂H0MP = 2

(−1 0
0 1

)

, (4.28)

H̃1 = P−1M−1
̂H1MP = 2

(

C̃ S̃

S̃ −C̃

)

,

where C̃, S̃ are diagonal L by L matrices with diagonal entries

C̃j,j = cos θj , S̃j,j = sin θj . (4.29)

Thus H̃ = H̃0 +k′H̃1 can be re-arranged as a matrix consisting of L two-by-two diagonal
blocks. It is then straightforward to calculate its exponential, giving

exp(−αH̃) =
(

Ũ Ṽ

Ṽ T̃

)

, (4.30)

where Ũ = Ũr (α), Ṽ = Ṽr (α), T̃ = T̃r (α) are diagonal matrices with diagonal entries (for
j = 1, . . . ,L)

Ũjj = uj (r,α) = cosh(2αλj ) + 1 − k′ cos θj

λj

sinh(2αλj ),

Ṽjj = vj (r,α) = −k′ sin θj sinh(2αλj )

λj

, (4.31)

T̃jj = tj (r, α) = cosh(2αλj ) − 1 − k′ cos θj

λj

sinh(2αλj )

and

λj = (

1 − 2k′ cos θj + k′2)1/2
. (4.32)

Calculation of Z̃

We want to calculate Z̃+(α) and Z̃−(β) from (3.5). First consider Z̃+(α), so take r = + in
the above equations. If we are working in the sub-space V+, we can use (4.17) to write (3.5)
as

Z̃+(α) = trace e−γJ e−αH (4.33)
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in the limit γ → +∞. Since H0 and H1 are traceless,

det e−ρH0 = det e−αH = 1 (4.34)

and from (3.4), det e−γJ = e−Ldγ , ̂J = ̂H0. From (4.15) we therefore have

e2Lγ Z̃+(α)2 = det(I + e−γ ̂H0 e−α ̂H) = det(eγ ̂H0 + e−α ̂H). (4.35)

Using the similarity transformation of (4.28), we can replace ̂H0, ̂H in (4.35) by H̃0, H̃,
giving

e2Lγ Z̃+(α)2 = det

(

e−2γ I + Ũ Ṽ

Ṽ e2γ I + T̃

)

. (4.36)

In the limit of γ large we expect the e−2γ I , Ṽ , T̃ blocks in this determinant to become
relatively negligible. The factors involving γ then cancel, leaving

Z̃+(α)2 = det Ũ = det Ũ+(α) =
L

∏

j=1

uj (+, α). (4.37)

Similarly,

Z̃−(α)2 = det Ũ−(α) =
L

∏

j=1

uj (−, α). (4.38)

Calculation of ˜W

The function ˜W(α,β, x) is defined by (3.6). We note that the operator S1 takes a vector in
V+ to one in V−, and vice-versa. In particular,

S1vr = v−r

so

lim
γ→+∞ e−γJ S1 = v−rv

†
r . (4.39)

We can use this to write (3.6) as a trace:

˜W(α,β, x) = trace e−γJ S1e−αHe−ρJ S1e−βH, (4.40)

in the limit γ → +∞. We take the factors e−γJ , e−βH to be acting in V−, the two other
exponential factors to be acting in V+.

The reason we are able to make further progress is that S1 also belongs to the group G. In
fact S1 = �L+1. This is linear in the �j , unlike H0 and H1, which from (4.16) are quadratic.
Even so,

S1�jS
−1
1 = εj�j , (4.41)

where εL+1 = +1, else εj = −1. The representative of S1 is therefore

̂S1 =
(−I 0

0 −E

)

, (4.42)
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where E is the diagonal matrix

E =

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 · · · ·
0 1 0
· ·
· 0 1 0
· · · · · 1

⎞

⎟

⎟

⎟

⎟

⎠

. (4.43)

Remembering that ̂J = ̂H0, the representative of the matrix whose trace is to be evalu-
ated in (4.40) is therefore the 2L by 2L matrix

̂W(α,β, x) = e−γ ̂H0̂S1e−α ̂He−ρ̂H0̂S1e−β ̂H (4.44)

and from (4.15)

e2L(γ+ρ)
˜W(α,β, x)2 = det

[

I + ̂W(α,β, x)
]

. (4.45)

We now use the similarity transformation of (4.28). We have to be careful because
A,M, P̂ , Q̂,P depend on r . We write them more explicitly as Ar,Mr, P̂r , Q̂r ,Pr . Simi-
larly we write the θj , zj of (4.25)–(4.27) as θr,j , zr,j . For the middle two exponential factors
we take r = +, for the others we take r = −. The result is

W̃ = P−1
− M−1

− ̂WM−P− = e−γ H̃0 S̃−e−αH̃e−ρH̃0 S̃+e−βH̃, (4.46)

where

S̃r = P−1
r M−1

r
̂S1M−rP−r . (4.47)

This threatens to become messy, but we find some remarkable simplifications. Firstly,

Mr
̂S1 = ̂S1M−r , (4.48)

so M−1
r

̂S1M−r = ̂S1 and (4.47) becomes

S̃r = P−1
r

̂S1P−r . (4.49)

The second surprise is that

Q̂−1
r EQ̂−r = P̂ −1

r P̂−r = −Fr, (4.50)

where Fr is the L by L matrix with entries

F
(r)
i,j = 2zr,i

L(z−r,j − zr,i)
, (4.51)

satisfying

F−F+ = I. (4.52)

Hence S̃r has the comparatively simple block-diagonal form

S̃r =
(

Fr 0
0 Fr

)

. (4.53)
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Let

Ỹ = S̃−e−αH̃e−ρH̃0 S̃+e−βH̃, (4.54)

then from (4.45) and (4.46)

e2L(γ+ρ)
˜W(α,β, x)2 = det

(

I + e−γ H̃0 Ỹ
)

= det
(

eγ H̃0I + Ỹ
)

. (4.55)

The RHS has the same structure as that of (4.36), so taking the limit γ → +∞, we obtain,
similarly to (4.37),

e2Lρ
˜W(α,β, x)2 = det Ỹ11, (4.56)

where Ỹ11 is the top-left L by L block of Ỹ . Using (4.28) and (4.30), it follows that

˜W(α,β, x)2 = det
[

F−Ũ+(α)F+Ũ−(β) + xF−Ṽ+(α)F+Ṽ−(β)
]

. (4.57)

Set, for r = + or −,

Xr(α) =
[

Ũr (α)
]−1

Ṽr (α). (4.58)

Then from (4.37) and (4.38), remembering that the Ũ , Ṽ matrices are diagonal, so commute,
we can write (4.57) as

˜W(α,β, x)2 = Z̃+(α)2Z̃−(β)2 det
[

I + xF−1
+ X+(α)F+X−(β)

]

. (4.59)

To summarize thus far, (4.37), (4.38), (4.59) give Z̃+(α), Z̃−(β), ˜W(α,β, x) in terms
of L by L determinants, and these formulae are exact for finite α,β,L. The spontaneous
magnetization M is then given by (3.11), taking the limit α,β,L → +∞.

5 Calculation of M

So far we have paralleled the method of Yang [5]. We now explicitly calculate M from the
above equations, but we use a method more like that of Montroll, Potts and Ward [4].

First set x = 1 and take the limit α,β → +∞ in (4.37), (4.38), (4.59), using (4.31). We
obtain

M2 = ξ+ξ− det
[

I + F−1
+ X+(∞)F+X−(∞)

]

, (5.1)

where

ξr =
L

∏

j=1

(

λr,j + 1 − k′ cos θr,j

2λr,j

)1/2

, (5.2)

and Xr(∞) is the diagonal matrix with diagonal entries

[Xr(∞)]j,j = −k′ sin θr,j

λr,j + 1 − k′ cos θr,j

. (5.3)

From (4.50), F+ = −P̂ −1
+ P̂−, so if we set

X̃r = P̂rXr(∞)P̂ −1
r (5.4)
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then (5.1) can be written

M2 = ξ+ξ− det
[

I + X̃+X̃−
]

. (5.5)

We could write this determinant as

det X̃+ det
[

X̃−1
+ + X̃−

]

.

From the definition (4.26) of P̂ , the matrices X̃+, X̃− are anti-cyclic and cyclic, respectively,
i.e.

[X̃r ]i,j = ηi−j = −rηL+i−j ,

where η is defined by this equation. The matrix X̃−1
+ + X̃− is therefore Toeplitz, its elements

i, j depending only on i − j , and one might hope to use Szegő’s theorem [4, 8] to evaluate
the determinant for large L.

Unfortunately this naive approach does not work because for large L the determinant
is not dominated by its near-diagonal elements, in particular elements such as (L,1),
(2,L − 3) do not tend to zero. However, we can rescue this idea by making a particular
bilinear transformation of X̃+, X̃−.

We set

Cr = (I − iX̃r )
−1(I + iX̃r ) = P̂rcr P̂

−1
r , (5.6)

where cr is a diagonal matrix with diagonal elements

(cr )j,j = λr,j + 1 − k′ exp(iθr,j )

λr,j + 1 − k′ exp(−iθr,j )
. (5.7)

Solving for Xr and substituting into (5.5), we obtain

M2 = ξ ′
+ξ ′

− det[(C+ + C−)/2], (5.8)

where

ξ ′
r = ξr det(I − iX̃r )

=
L

∏

j=1

{ [λr,j + 1 − k′ exp(−iθr,j )]2

2λr,j (λr,j + 1 − k′ cos θr,j )

}1/2

. (5.9)

From (4.32),

λ2
r,j = [1 − k′ exp(iθr,j )][1 − k′ exp(−iθr,j )],

from which it follows that

ξ ′
r =

L
∏

j=1

[

1 − k′ exp(−iθr,j )

1 − k′ exp(iθr,j )

]1/4

. (5.10)

The θr,j are either π or 2π , or occur in pairs θr,j ,2π − θr,j . It follows that

ξ ′
+ = ξ ′

− = 1. (5.11)
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Also, (cr )j,j simplifies to

(cr )j,j =
[

1 − k′ exp(−iθr,j )

1 − k′ exp(iθr,j )

]1/2

. (5.12)

From (4.26) and (5.6), the elements of Cr are

(Cr)i,j = 1

L

L
∑

m=1

(cr )m,mzi−j
r,m , (5.13)

where zr,m = eiθr,m . The summand depends on m via θr,m and is an analytic function of θr,m

on the real axis, periodic of period 2π . The θr,m are distributed uniformly throughout this
period. If i, j are held finite and L → ∞, it follows that

(Cr)i,j = 1

2π

∫ 2π

0
f (θ)ei(i−j)θdθ, (5.14)

where

f (θ) =
[

1 − k′ exp(−iθ)

1 − k′ exp(iθ)

]1/2

. (5.15)

This is actually the function eiδ∗
of Onsager [1, (89)] and Montroll et al. [4, (42)]. In their

notation z1 = tanhH ′, z∗
2 = tanhH ∗ and our k′ is k′ = z∗

2/z1. We have replaced ω by θ and
taken the hamiltonian limit z1, z

∗
2 → 0.

Note that the limit (5.14) is the same for r = +1 and r = −1. Also, for large but finite
L, the corrections to (5.14) vanish exponentially with L. The near-diagonal elements of C+
and C− therefore become equal when L is large.

Since zL
r,m = −r , incrementing i or j in (5.13) by L negates (Cr)i,j for r = +, and leaves

it unchanged for r = −. This means that the near-top-right and near-bottom-left elements of
C+ and C− also tend to finite limits as L becomes large, but are equal and opposite. Their
sum therefore approaches exponentially to zero.

Hence when L is large we expect (5.8) to become

M2 = detC, (5.16)

where C is the L by L matrix with elements (i, j) given by (5.14). These elements tend
exponentially to zero as |i − j | becomes large. This is a special case of the Toeplitz matrix
discussed in [4] and we can use the general result (68) therein:

lim
L→∞

G−L detC = exp

( ∞
∑

n=1

nκnκ−n

)

, (5.17)

where

G = exp

(

1

2π

∫ 2π

0
logf (θ)dθ

)

,

and

logf (θ) =
∞

∑

n=−∞
κneinθ .
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Since logf (θ) is an odd periodic function of θ , we have G = 1. Also, taking the loga-
rithm of (5.15) and Laurent expanding, we readily find

2κn = k′n/n if n > 0, 2κn = −k′−n
/n if n < 0. (5.18)

It follows that detC = (1 − k′2)1/4, and hence

M = (1 − k′2)1/8. (5.19)

This is of course Onsager’s famous result [3–5].

6 Connection with the Superintegrable Chiral Potts Model

The superintegrable case of the N -state chiral Potts model has some properties that closely
resemble the Ising model. In particular, there is a spin-shift operator R that is the natural
generalization of (2.14) and divides the vector space into N sub-spaces VQ, labelled by
Q = 0,1, . . . ,N1. Within each VQ, if one imposes the fixed-spin boundary conditions of
Fig. 1, the transfer matrix T generates a yet smaller sub-space of dimension 2m, where

m = mQ =
[

(N − 1)L − Q

N

]

. (6.1)

Here [x] means the integer part of the real number x.
Within VQ, T is a direct product of m two-by-two matrices, and there are similarity

transformations that reduce the associated hamiltonian to the direct sum [11, (2.20)]

H = μQ − N

m
∑

j=1

[(1 − k′ cos θj )Sj − k′ sin θjCj ],

where

μ = μQ = 2k′Q + (1 + k′)(mN − NL + L) (6.2)

and θ1, . . . , θm are defined by

cos θj = (1 + wj)/(1 − wj), 0 < θi < π, (6.3)

the w1, . . . ,wm being the zeros of

P (zN) = z−Q

N−1
∑

n=0

ω(L+Q)n[(zN − 1)/(z − ωn)]L, (6.4)

which is a polynomial in w = zN of degree m.

6.1 The Partition Functions Z̃

One can explicitly calculate [12] the partition functions that generalize (4.37), (4.38):

Z̃Q(α) = e−μαu1(α) · · ·um(α), (6.5)
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the function uj (α) again being defined by (4.31), (4.32).
For N = 2 the model reduces to the Ising model with

r = 1 − 2Q, m(r) = mQ, (6.6)

so Q = 0 corresponds to R = +1, while Q = 1 corresponds to R = −1. The result (6.5) of
course agrees with (4.37), (4.38), but has a slightly different form. The partition function is
no longer squared on the LHS and instead of there being L variables θj , there are only m,
which lie between (L − 2)/2 and L/2. They are the same as the θj of the previous sections,
but j takes only the values 1 to m and 0 < θj < π .

These differences are easily explained. For every θj with j = 1, . . . ,m there is a θj ′ =
2π − θj , where j ′ = L+1−Q− j and m < j ′ ≤ L. They have the same value of uj (α) and
each occurs in (4.37), (4.38), while only one occurs in (6.5). This accounts for the absence
of the square in (6.5) and the presence of the factor e−μα accounts for the exceptional cases
θj = π or 2π , which are included in the product in (4.37), (4.38).

There are a total of four cases to consider.

(1) r = +1, Q = 0, L = even: there are no exceptional cases and m = L/2, μ = 0.
(2) r = +1, Q = 0, L = odd: then m = (L − 1)/2,μ = −1 − k′. There is an exceptional

case at j = (L + 1)/2 = m + 1, where θj = π , uj (α) = exp[2(1 + k′)α] = e−2μα .
(3) r = −1, Q = 1, L = even: then m = (L − 2)/2, μ = −2. There are two exceptional

cases at j = L/2 and L, with θj = π and 2π , uj (α) = exp[2(1 + k′)α] and exp[2(1 −
k′)α], so uL/2(α)uL(α) = e−2μα .

(4) r = −1, Q = 1, L = odd: then m = (L − 1)/2, μ = k′ − 1. There is an exceptional case
at j = L, with θj = 2π , uj (α) = exp[2(1 − k′)α] = e−2μα .

In each case the total contribution of the exceptional cases to the RHS of (4.37) or (4.38)
is e−2μα , which accounts for the factor e−μα in (6.5).

6.2 The Partition Function ˜W

Equation (6.5) simplifies (4.37) and (4.38), expressing the Z̃Q(α) as a product rather than
the square root of a product, and reducing the number of factors from L to m or m′, where

m = m(+) = [L/2], m′ = m(−) = [(L − 1)/2]. (6.7)

Can we similarly reduce the expression (4.57) for ˜W(α,β, x)?
The answer is yes, apart from simple factors that are independent of x and easily calcu-

lated. We show that the matrix

G = Ũ+(α)F+Ũ−(β) + xṼ+(α)F+Ṽ−(β) (6.8)

can be reduced to block lower-triangular form and its determinant expressed as simple fac-
tors times the square of an m′ by m′ determinant.

For brevity, in the following two sub-sections, unless indicated otherwise we write

θj = θ+,j , θ ′
j = θ−,j ,

uj = Ũ+(α)j,j = u+,j (α), vj = Ṽ+(α)j,j = v+,j (α),

u′
j = Ũ−(β)j,j = u−,j (β), v′

j = Ṽ−(β)j,j = v−,j (β).
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We use the definition (4.51) of F± and the properties (4.52), (6.12). We also implicitly
use

uL+1−j = uj , vL+1−j = −vj , u′
L−j = u′

j , v′
L−j = −v′

j . (6.9)

We do not in this section need the definitions (4.31).

The Case L Even

In this case note that the Ũ+(α), Ṽ+(α) on the left of (6.8) depend on the θj , which satisfy
θi + θL+1−i = 2π , so it is natural to combine rows i and L+1− i. The Ũ−(β), Ṽ−(β) on the
right involve θ ′

j , satisfying θ ′
j + θ ′

L−j = 2π , so it is natural to combine columns j and L− j .
Also, columns L/2 and L both correspond to exceptional values of θ ′

j , where sin θ ′
j = 0.

The elements v′
L/2, v

′
L of Ṽ−(β) vanish for these two columns. From (6.7),

m = L/2, m′ = (L − 2)/2 = m − 1. (6.10)

We perform the following equivalence transformations sequentially on G:

1) Gij → Gij + GL+1−i,j , 1 ≤ i ≤ m,1 ≤ j ≤ L

2) Gij → Gij + Gi,L−j , m < j < L

3) Gi,L → Gi,L − u′
LGi,m/u′

m,

4) Gi,j → Gi,j − u′
jGi,m/u′

m, 1 ≤ j < m

5) Gi,j → Gi,j − 2u′
jGi,m/u′

m, m < j < L

6) Gi,j → Gi,j − (1 + c′
j )u

′
jGi,L/u′

L, m < j < L

(6.11)

where c′
j = cos(θ ′

j ).
The first transformation corresponds to pre-multiplying G by some matrix, all the others

to post-multiplying it. Steps (2) to (6) are for all values of i, i.e. 1 ≤ i ≤ L. At every step we
are merely incrementing rows or columns by linear combinations of other rows or columns,
so the determinant of G is unchanged.

The elements Fi,j of F+ satisfy

Fij + FL+1−i,L−j = Fi,L + FL+1−i,L = −2/L (6.12)

for all i, j . It follows that the final matrix G is such that

Gi,j = 0 for 1 ≤ i ≤ m, m < j ≤ L. (6.13)

Thus G is now block lower-triangular:

G =
(

Y 0
T Z

)

, (6.14)

where the Y,T ,Z are m by m matrices. We find

Yi,j = −2i(sin θ ′
j uiu

′
j + x sin θiviv

′
j )

L(cos θi − cos θ ′
j )

,

Yi,m = −2uiu
′
m/L

(6.15)

for 1 ≤ i ≤ m,1 ≤ j < m.
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Note that the equivalence transformations are independent of x, so Y,T ,Z are all linear
in x, their coefficients being the transforms of the corresponding coefficients of G.

We define the m by m matrix Z by (6.14), but with the rows and columns re-arranged so
that, for 1 ≤ i, j ≤ m,

(Z)i,j = (G)L+1−i,j ′ , (6.16)

where j ′ = L if j = m, else j ′ = L − j . Let D,D′ be the diagonal matrices with elements

Dj,j = sin θi, D′
j,j = sin θ ′

i (6.17)

for j = 1, . . . ,m, except that D′
m,m = −iu′

L/u′
m. Then we find that

Z = −D−1YD′. (6.18)

Hence

detG = det(−D′)(detY )2/detD (6.19)

and we see that detG is basically the square of the m by m determinant detY .
We can do better yet and write it in terms of the square of an m′ = m − 1 determinant.

Expand the matrices G,Y in powers of x:

G = g0 + xg1, Y = y0 + xy1, (6.20)

so g0,g1,y0,y0 are x-independent matrices and g0 = Ũ+(α)F+Ũ−(β). From (4.52), its in-
verse is

g−1
0 = Ũ−(β)−1F−Ũ+(α)−1. (6.21)

We can follow the above six steps (6.11) and evaluate g−1
0 after the six equivalence transfor-

mations. It also becomes block lower-triangular, as in (6.14). In particular its top-left block
is y−1

0 , with elements

[

y−1
0

]

i,j
= −2i sin θ ′

i

L(cos θ ′
i − cos θj )u

′
iuj

,

[

y−1
0

]

m,j
= −1/(u′

muj ),

(6.22)

for 1 ≤ i < m, 1 ≤ j ≤ m. This matrix is necessarily the inverse of y0 and from (6.19)

det g−1
0 G = [det y−1

0 Y ]2. (6.23)

We calculate y−1
0 Y . From (6.15), the last column of y1 vanishes. Hence, using (6.20),

y−1
0 Y = I + xD̃, (6.24)

where D̃ = y−1
0 y1 and again the last column of D vanishes. The determinant of the RHS is

therefore the same as that of the RHS truncated to its first m′ = m − 1 rows and columns.
We can therefore ignore the last column of Y and the last row of y−1

0 when calculating
the LHS, and contract Y to the non-square m by m′ matrix with elements given by the first
of (6.15), y−1

0 to the m′ by m matrix with elements given by the first of (6.22).
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We define the m by m′ matrix A+ and the m′ by m matrix A− by

(A+)i,j = 2 sin θi

L(cos θi − cos θ ′
j )

, (A−)i,j = 2 sin θ ′
i

L(cos θ ′
i − cos θj )

. (6.25)

Then from (6.15), (6.22),

y1 = −iṼ+(α)A+Ṽ−(β), y−1
0 = −iŨ−(β)−1A−Ũ+(α)−1, (6.26)

where we now take the Ũr , Ṽr , X̃r to be the diagonal matrices defined by (4.31), (4.58), but
truncated to the first m(r) terms.

Hence

D̃ = −Ũ−(β)−1DŨ−(β),

where

D = −A−X+(α)A+X−(β). (6.27)

From (6.23), we obtain

detG = det
(

Ũ+(α)F+Ũ−(β)
)

[det(Im′ + xD)]2 , (6.28)

where Im′ is the identity m′ by m′ matrix.
The relations (4.57), (4.59) therefore become

˜W(α,β, x) = Z̃+(α)Z̃−(β)det[Im′ − xA−X+(α)A+X−(β)]. (6.29)

We have eliminated the square on the LHS and used only matrices of dimensions m or m′,
involving only θ1, . . . , θm, θ ′

1, . . . , θ
′
m′ .

The Case r = +, L Odd

Now (6.7) gives m = m′ = (L− 1)/2, so the matrix G has one exceptional row at i = m+ 1
and one exceptional column at j = L. The steps corresponding to (6.11) are

1) Gij → Gij + GL+1−i,j , 1 ≤ i ≤ m,1 ≤ j ≤ L

2) Gij → Gij − 2uiGm+1,j /um+1, 1 ≤ i ≤ m,1 ≤ j ≤ L

3) Gij → Gij + Gi,L−j , m < j < L

4) Gi,j → Gi,j − 2u′
jGi,L/u′

L, m < j < L

5) Gi,j → Gi,j − u′
jGi,L/u′

L, 1 ≤ j ≤ m.

(6.30)

The first two transformations correspond to pre-multiplying Gr by some matrix, all the
others to post-multiplying it. Steps (3) to (6) are for all values of 1 ≤ i ≤ L.

Using (6.12), we find that the transformed G has the structure

G =
⎛

⎝

Y 0 0
·· 0 −um+1u

′
L

T Z ··

⎞

⎠ , (6.31)

where Y,T ,Z are all m by m′ = m blocks and the middle row and last column have width
one. Hence

detG = um+1u
′
L(detY )(detZ).
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We also find

Yij = −4i cos2(θi/2)[uiu
′
j tan(θ ′

j /2) + xviv
′
j tan(θi/2)]

L(cos θi − cos θ ′
j )

, (6.32)

and again if we rearrange Z so that Zij = GL+1−i,L−j for 1 ≤ i, j ≤ m, then

Z = −D−1YD′, (6.33)

with D,D′ given by (6.17) for all 1 ≤ j ≤ m. Further,

(y−1
0 )ij = −2i sin θ ′

i

L(cos θ ′
i − cos θj )u

′
iuj

. (6.34)

From (6.15) and (6.32), y0 is different for the two cases (L even and L odd). However,
the wanted elements of y1 and of y−1

0 are the same, so again ˜W(α,β, x) is given by (6.29),
with A+,A− given by (6.25).

From (4.31), (4.58), the diagonal matrices X± have diagonal elements

[X+(α)]jj = − k′ sin θj sinh(2αλj )

λj cosh(2αλj ) + (1 − k′ cos θj ) sinh(2αλj )
,

[X−(β)]
jj

= − k′ sin θ ′
j sinh(2βλ′

j )

λ′
j cosh(2βλ′

j ) + (1 − k′ cos θ ′
j ) sinh(2βλ′

j )
,

(6.35)

λj being defined by (4.32) and λ′
j by the same equation with θj replaced by θ ′

j .

7 ˜W in Terms of Orthogonal Matrices B+, B−

In this section we take the result (6.29) and write it in terms, not of the matrices A+,A−, but
of related orthogonal matrices B+,B−.

In both the L even and odd cases, the matrices y−1
0 ,yT

0 above have a very similar struc-
ture, differing only by diagonal equivalence transformations. We can therefore construct
orthogonal matrices B+,B− that differ from A+,A− only by such diagonal equivalence
transformations.

Let E,E′ be diagonal matrices with diagonal elements

Ejj = sin θj , E′
jj = sin θ ′

j if L = even,

Ejj = tan(θj /2), E′
jj = tan(θ ′

j /2) if L = odd.
(7.1)

Then whether L is even or odd, we find from (6.15), (6.17), (6.22), (6.25), (6.32), (6.34)
that

y−1
0 = iD′AT

+D−1, y0 = −iE−1A+E′, AT
− = −D−1A+D′, (7.2)

y−1
0 being the left-inverse of y0.

Hence we can define matrices B+,B−:

B+ = (DE)−1/2A+(D′E′)1/2, B− = (E′/D′)1/2A−(D/E)1/2 (7.3)

such that

B−BT
− = BT

+B+ = Im′ , B− = −BT
+, (7.4)
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so, even though they are not necessarily square, they are orthogonal in this sense. Their
elements are

(B+)ij = −(B−)ji = 2 sin θ ′
j

L(cos θi − cos θ ′
j )

if L = even,

(B+)ij = −(B−)ji = 4 cos(θi/2) sin(θ ′
j /2)

L(cos θi − cos θ ′
j )

if L = odd.

(7.5)

Set

E+ = E, E− = E′−1. (7.6)

Then we can write the result (6.29) as

˜W(α,β, x) = Z̃+(α)Z̃−(β)det[Im′ − xX+(α)E+B+X−(β)E−B−]. (7.7)

We can slightly generalize this result. Write ˜W(α,β, x) as ˜W+(α,β, x), and define a
new function ˜W−(α,β, x) to be given by (3.6) with v+, v− interchanged. Thus (3.5), (3.6)
become

Z̃r (α) = v†
r eαHvr , ˜Wr(α,β, x) = v†

r eαHeρJ S1eβHv−r . (7.8)

Then we can generalize (7.7) to

˜Wr(α,β, x) = Z̃r (α)Z̃−r (β)det[I − xXr(α)ErBrX−r (β)E−rB−r ], (7.9)

for r = ±, where I is the identity matrix of dimension m(r). For r = +, (7.9) is (7.7). For
r = − it can be deduced from it by taking the hermitian conjugate of the definition (7.8) of
˜W− and interchanging α with β . We also need the general identity

det(I + AB) = det(I + BA),

which is true for all matrices A,B even when they are non-square.

8 Conclusions

We have considered the zero-field Ising model on a cylindrical lattice with fixed spin bound-
ary conditions on the top and bottom rows, and have replaced the transfer matrix product by
the exponential of the associated hamiltonian. This leaves the eigenvectors and spontaneous
magnetization unchanged.

We have then used the Clifford algebra technique of Kaufman [2] to evaluate as L by
L determinants the partition function Z̃, and the partition function ˜W with a single-spin
operator S1 included. In Sect. 5 we show how to use Szegő’s theorem on Toeplitz matrices
to then obtain the spontaneous magnetization.

Much of this merely parallels Yang’s derivation [5], but in Sect. 6 we go on to reduce Z̃

and ˜W to determinants of size m or m′ where L − 2 ≤ 2m ≤ L.
In this form we can compare the Ising model results for Z̃ with those of the N -state

superintegrable chiral Potts model, taking the hamiltonian limit therein [11, 12]. The Ising
model is the superintegrable chiral Potts model with N = 2, and the results of course agree.

All this leads up to the question whether we can generalize the Ising result (6.29) or
(7.9) for ˜W to the N -state superintegrable chiral Potts model, for general N . This should
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open up the possibility of an algebraic derivation of the spontaneous magnetization of that
model. We have numerical evidence that strongly suggests the answer to the question is
yes, and that one can make a fairly immediate generalization of the form of the result given
in (7.9) in terms of the orthogonal matrices B+,B−. We shall present the conjecture in an
accompanying paper [12].
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